These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacological and physiological properties of serofendic acid, a novel neuroprotective substance isolated from fetal calf serum. Author: Akaike A, Katsuki H, Kume T. Journal: Life Sci; 2003 Dec 05; 74(2-3):263-9. PubMed ID: 14607254. Abstract: Excess activation of glutamate receptors and production of large amount of free radicals including nitric oxide (NO) may be responsible for neuronal death associated with neurodegenerative disorders, but endogenous defense systems that protect neurons from these insults are poorly understood. In the course of studies to explore neuroprotective substance in mammalian origin, we isolated a neuroprotective factor from an ether extract of fetal calf serum based on the ability to protect rat primary cortical neurons against NO-induced cytotoxicity. A novel lipophilic low-molecular-weight substance that exerted potent neuroprotective actions at submicromolar concentrations was named "serofendic acid". Mass spectrometry and nuclear magnetic resonance spectroscopy revealed the chemical structure of serofendic acid (15-hydroxy-17-methylsulfinylatisan-19-oic acid) as a sulfur-containing atisane type diterpenoid, which is unique among known endogenous substances. Synthetic serofendic acid exhibited potent protective actions on cortical neurons against cytotoxicity of a NO donor as well as of glutamate, although it did not affect glutamate receptor-mediated responses in these neurons. Electron spin resonance analysis demonstrated that serofendic acid had no direct scavenging activity on NO but was capable of inhibiting the generation of hydroxyl radical, a presumed 'executor' radical in the nitric oxide-mediated neurotoxic cascade. These findings suggest that serofendic acid is a low-molecular-weight neuroprotective factor that attenuates free radical-mediated damage triggered by excessive stimulation of neuronal glutamate receptors.[Abstract] [Full Text] [Related] [New Search]