These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures. Author: Brahma PP, Harmon TC. Journal: J Contam Hydrol; 2003 Dec; 67(1-4):43-60. PubMed ID: 14607469. Abstract: This paper investigates the dissolution characteristics of ternary nonaqueous phase liquid (NAPL) mixtures with the goal of comparing the relative contributions of multicomponent (intra-NAPL) diffusion, film transfer and thermodynamic nonideality. These contributions are compared at the pore scale and intermediate scale (several centimeters downstream from the source). Trichloroethene (TCE), tetrachloroethene (PCE) and 1,1,1-trichloroethane (TCA) were selected to model a reasonably ideal mixture; TCE, PCE and octanol were selected as a relevant nonideal mixture. A multicomponent diffusion-based dissolution model incorporating hydrodynamic theory was formulated to estimate intra-NAPL concentration gradients and associated aqueous interfacial concentrations for ideally shaped (spherical) NAPL blobs. Pore scale dissolution times for this model were compared to those generated using the conventional well-mixed NAPL dissolution model, applying the same film transfer boundary condition in both cases. Activity coefficients (spatially and temporally variable for the diffusion model, temporally variable for the well-mixed model) were estimated using UNIFAC. NAPL interfacial concentration histories generated using the pore scale models were used as input in a three-dimensional groundwater transport model (MT3DMS) to compare downstream concentration distributions. For the relatively large NAPL bodies simulated (r=0.6 cm), intra-NAPL diffusion effects were found to be significant at the pore scale and were strongly impacted by the mixture's thermodynamic ideality. At the intermediate scale, and for the conditions tested, modest differences in the simulations suggested that intra-NAPL diffusion effects would be negligible compared to those associated with mixture composition uncertainty, dissolution rate processes related to NAPL-induced permeability effects and hydrodynamic issues associated with flow field heterogeneity.[Abstract] [Full Text] [Related] [New Search]