These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants.
    Author: Rate AW, Lee KM, French PA.
    Journal: Bioresour Technol; 2004 Feb; 91(3):223-31. PubMed ID: 14607481.
    Abstract:
    Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.
    [Abstract] [Full Text] [Related] [New Search]