These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glioblastoma multiforme: clinical findings, magnetic resonance imaging, and pathology in five dogs.
    Author: Lipsitz D, Higgins RJ, Kortz GD, Dickinson PJ, Bollen AW, Naydan DK, LeCouteur RA.
    Journal: Vet Pathol; 2003 Nov; 40(6):659-69. PubMed ID: 14608019.
    Abstract:
    Although glioblastoma multiforme (GBM), a World Health Organization grade IV astrocytoma, is the most common primary brain tumor in humans, in dogs GBM is relatively rare, accounting for only about 5% of all astrocytomas. This study presents combined clinical, neuroimaging, and neuropathologic findings in five dogs with GBM. The five dogs, aged from 5 to 12 years, were presented with progressive neurologic deficits that subsequent clinical neurologic examination and neuroimaging studies by magnetic resonance imaging (MRI), localized to space occupying lesions in the brain. MRI features of the tumors included consistent peritumoral edema (n = 5), sharp borders (n = 4), ring enhancement (n = 3), heterogenous T2-weighted signal intensity (n = 3), iso- to hypointense T1-weighted images (n = 5), necrosis (n = 5), and cyst formation (n = 2). Two tumors were diagnosed clinically using a computed tomography-guided stereotactic biopsy procedure. At necropsy all the tumors resulted in, on transverse sections, a prominent midline shift and had a variegated appearance due to intratumoral necrosis and hemorrhage. Histologically, they had serpentine necrosis with glial cell pseudopalisading and microvascular proliferation, features which distinguish human GBM from grade III astrocytomas. Immunoreactivity of tumor cells for glial fibrillary acidic protein was strongly positive in all cases, whereas 60% and 40% of the tumors also expressed epidermal growth factor receptor and vascular endothelial growth factor, respectively. These canine GBMs shared many diagnostic neuroimaging, gross, microcopic, and immunoreactivity features similar to those of human GBMs.
    [Abstract] [Full Text] [Related] [New Search]