These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetic study on the reactions of platinum drugs with glutathione.
    Author: Hagrman D, Goodisman J, Souid AK.
    Journal: J Pharmacol Exp Ther; 2004 Feb; 308(2):658-66. PubMed ID: 14610218.
    Abstract:
    The binding of platinum (Pt) drugs (oxaliplatin, carboplatin, and cisplatin) to glutathione (GSH, 6.75 mM) was investigated at 37 degrees C in Hepes (100 mM, pH approximately 7.4) or Tris-NO(3) (60 mM, pH 7.4) buffer and NaCl (4.62, 6.63, or 7.82 mM). The conditions were chosen to mimic passage of clinical concentrations of the drugs (135 microM) through the cytosol. The reactions were monitored by UV-absorption spectroscopy, high-performance liquid chromatography (HPLC), and atomic absorption spectroscopy. The initial rates, detected by UV absorbance, were similar for oxaliplatin and cisplatin reacting with GSH and were more than 5-fold faster than for carboplatin reacting with GSH. The Pt contents in HPLC eluates corresponding to unbound drug decreased exponentially with time, confirming that the reactions were first order in [Pt drug] and allowing determination of the pseudo first-order rate constants (k(1)). The second-order rate constants (k(2)) were calculated as k(1) divided by [GSH]. The k(2) value for oxaliplatin reacting with GSH was approximately 3.8 x 10(-2) M(-1) s(-1), for cisplatin reacting with GSH approximately 2.7 x 10(-2) M(-1) s(-1), and for carboplatin reacting with GSH approximately 1.2 x 10(-3) M(-1) s(-1) (approximately 32-fold slower than that of oxaliplatin and approximately 23-fold slower than that of cisplatin). These results demonstrate an influence of ligands surrounding the Pt coordination sphere on the reactivity of Pt(2+) with GSH.
    [Abstract] [Full Text] [Related] [New Search]