These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. Author: Asberg P, Inganäs O. Journal: Biosens Bioelectron; 2003 Nov 30; 19(3):199-207. PubMed ID: 14611755. Abstract: We have utilized the highly conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) aqueous dispersion (PEDOT/PSS) to build a conducting hydrogel matrix. Together with appropriate biomolecules this constitutes a hydrogel bio-electrode. The open hydrogel structure makes diffusion of analytes surrounding the cells into the matrix electrode easier. If enzymes are utilized, osmium is used as mediator between the prosthetic group of the enzyme and the conducting polymer matrix. Osmium also functions as a crosslink point to poly-4-vinylpyridine, which together with the magnesium crosslinked PEDOT/PSS gives a rigid hydrogel. The enzyme Horseradish peroxidase (HRP) was used as a model enzyme to evaluate the enzyme-enhanced electrode. We evaluated the electrode at pH 7, which is the pH choice for many biological systems. From cyclic voltammetry (CV) measurements we deduced that a very low reduction potential was needed to reduce the prosthetic group. Constant potential amperometry were performed to demonstrate the biosensor capabilities. A differential sensitivity of 0.13 A M(-1) cm(-2) through the 0-30 microM concentration range was achieved. Both the biostability and the influence on conductivity, important aspects when for example making nerve- or cell-electrodes, were investigated.[Abstract] [Full Text] [Related] [New Search]