These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Author: Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C. Journal: Arthritis Rheum; 2003 Nov; 48(11):3151-8. PubMed ID: 14613277. Abstract: OBJECTIVE: We have previously demonstrated that reactive oxygen species (ROS) are involved in cartilage degradation. Decreased size of hyaluronan (HA), the major macromolecule in synovial fluid, to which it imparts viscosity, is reported in patients with arthritis. The purpose of this study was to determine the alteration in the molecular weight range of HA as a result of mechanical deformation loaded on the chondrocytes, as well as the involvement of ROS in this action. METHODS: ROS were generated via the oxidation of hypoxanthine by xanthine oxidase. Cyclic tensile stretch was loaded using a vacuum-operated instrument. Levels of HA were measured using a sandwich enzyme-binding assay. Superoxide dismutase (SOD) activity and ROS were measured using water-soluble tetrazolium and a chemiluminescent probe, respectively. RESULTS: ROS depolymerized HA molecules. Cyclic tensile stretch depolymerized HA and induced ROS. SOD inhibited not only ROS induction but also HA depolymerization caused by the mechanical stress. CONCLUSION: ROS play an important role in mechanical stress-induced HA depolymerization.[Abstract] [Full Text] [Related] [New Search]