These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology.
    Author: McKhann GM, Wenzel HJ, Robbins CA, Sosunov AA, Schwartzkroin PA.
    Journal: Neuroscience; 2003; 122(2):551-61. PubMed ID: 14614919.
    Abstract:
    Genetic influences contribute to susceptibility to seizures and to excitotoxic injury, but it is unclear if/how these susceptibilities are linked. This study assessed the impact of genetic background on mouse strain seizure susceptibility, seizure phenotype, mortality, and hippocampal histopathology. A subcutaneous (s.c.) kainic acid multiple injection protocol was developed. Five mouse strains were tested: a and b) C57BL/6J and 129/SvJ, strains commonly used in gene targeting experiments; c) C3HeB/FeJ, a strain with reported sensitivity to the convulsant effects of kainic acid (KA); d) 129/SvEms, a strain reportedly susceptible to hippocampal excitotoxic cell death; and e) a mixed genetic background strain (129/SvJXC57BL/6J) from which targeted gene deletion experiments have been carried out. Histopathological features were examined at early (7-10 day), delayed (2-4 month), and late (6-13 month) time points.Mouse background strains can be genetically segregated based on excitotoxin sensitivity, seizure phenotype, mortality, and hippocampal histopathology. When injected with KA, C3HeB/FeJ and C57BL/6J strains were resistant to cell death and synaptic reorganization despite severe behavioral seizures, while 129/SvEms mice developed marked pyramidal cell loss and mossy fiber sprouting despite limited seizure activity. The mixed background 129/SvJXC57BL/6J group exhibited features of both parental strains. In the mouse strains tested, the duration or severity of seizure activity was not predictive of subsequent hippocampal pyramidal cell death and/or synaptic reorganization. Unlike rats, mice exhibiting prolonged high-grade KA-induced seizure activity did not develop subsequent spontaneous behavioral seizures.
    [Abstract] [Full Text] [Related] [New Search]