These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Author: Navratil T, Spremulli LL. Journal: Biochemistry; 2003 Nov 25; 42(46):13587-95. PubMed ID: 14622005. Abstract: Elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA to the A-site of the ribosome. In a multiple-sequence alignment of prokaryotic EF-Tu's, Gln97 is nearly 100% conserved. In contrast, in mammalian mitochondrial EF-Tu's, the corresponding position is occupied by a conserved proline residue. Gln97 is located in the switch II region in the GDP/GTP binding domain of EF-Tu. This domain undergoes a significant structural rearrangement upon GDP/GTP exchange. To investigate the role of Gln97 in bacterial EF-Tu, the E. coli EF-Tu variant Q97P was prepared. The Q97P variant displayed no activity in the incorporation of [(14)C]Phe on poly(U)-programmed E. coli ribosomes. The Q97P variant bound GDP more tightly than the wild-type EF-Tu with K(d) values of 7.5 and 12 nM, respectively. The intrinsic rate of GDP exchange was 2-3-fold lower for the Q97P variant than for wild-type EF-Tu in the absence of elongation factor Ts (EF-Ts). Addition of EF-Ts equalized the GDP exchange rate between the variant and wild-type EF-Tu. The variant bound GTP at 3-fold lower levels than the wild-type EF-Tu. Strikingly, the Q97P variant was completely inactive in ternary complex formation, accounting for its inability to function in polymerization. The structural basis of these observations is discussed.[Abstract] [Full Text] [Related] [New Search]