These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR. Author: Buffy JJ, Waring AJ, Lehrer RI, Hong M. Journal: Biochemistry; 2003 Nov 25; 42(46):13725-34. PubMed ID: 14622019. Abstract: The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.16 in DLPC bilayers but has a near-unity order parameter of 0.96 in POPC bilayers. The larger couplings of PG-1 in POPC bilayers indicate immobilization of the peptide, suggesting that PG-1 forms oligomeric aggregates at the biologically relevant bilayer thickness. Exchange NMR experiments on F12 (13)CO-labeled PG-1 show that the peptide undergoes slow reorientation with a correlation time of 0.7 +/- 0.2 s in POPC bilayers. This long correlation time suggests that in addition to aggregation, geometric constraints in the membrane may also contribute to PG-1 immobilization. The PG-1 aggregates contact both the surface and the hydrophobic center of the POPC bilayer, as determined by (1)H spin-diffusion measurements. Thus, solid-state NMR provides a wide range of information about the molecular details of membrane peptide immobilization and aggregation in lipid bilayers.[Abstract] [Full Text] [Related] [New Search]