These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. Author: Kataoka N, Dreyfuss G. Journal: J Biol Chem; 2004 Feb 20; 279(8):7009-13. PubMed ID: 14625303. Abstract: Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we developed for in vitro splicing, we prepared lysates from cells transfected with tagged EJC proteins and studied the association of these proteins with pre-mRNA, splicing intermediates, and mRNA, as well as formation of the EJC during splicing. Three of the EJC components, Aly/REF, RNPS1, and SRm160, are found on pre-mRNA by the time the spliceosome is formed, whereas Upf3b associates with splicing intermediates during or immediately after the first catalytic step of the splicing reaction (cleavage of exon 1 and intron-lariat formation). In contrast, Y14 and magoh, which remain stably associated with mRNA after export to the cytoplasm, join the EJC during or after completion of exon-exon ligation. These findings indicate that EJC formation is an ordered pathway that involves stepwise association of components and is coupled to specific intermediates of the splicing reaction.[Abstract] [Full Text] [Related] [New Search]