These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in the relationship between joint angle and torque production associated with the repeated bout effect. Author: McHugh MP, Tetro DT. Journal: J Sports Sci; 2003 Nov; 21(11):927-32. PubMed ID: 14626372. Abstract: A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length-tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad x s(-1) with a target intensity of 90% of isometric strength at 70 degrees of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30 degrees, 50 degrees, 70 degrees, 90 degrees and 110 degrees of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110 degrees (bout x angle: P < 0.01). On day 2, strength averaged 86% of baseline for 30-90 degrees and 102% of baseline for 110 degrees. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P < 0.001; strength: P < 0.01). The repeated bout effect was associated with a rightward shift in the length-tension curve; before the repeated bout, isometric strength was 6.8% lower at 30 degrees and 13.6% higher at 110 degrees compared with values before the initial bout (bout x angle: P < 0.05). Assuming that torque production at 110 degrees occurs on the descending limb of the length-tension curve, the increase in torque at 110 degrees may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.[Abstract] [Full Text] [Related] [New Search]