These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stable transfection of an estrogen receptor beta cDNA isoform into MDA-MB-231 breast cancer cells.
    Author: Tonetti DA, Rubenstein R, DeLeon M, Zhao H, Pappas SG, Bentrem DJ, Chen B, Constantinou A, Craig Jordan V.
    Journal: J Steroid Biochem Mol Biol; 2003 Oct; 87(1):47-55. PubMed ID: 14630090.
    Abstract:
    We previously reported stable transfection of estrogen receptor alpha (ERalpha) into the ER-negative MDA-MB-231 cells (S30) as a tool to examine the mechanism of action of estrogen and antiestrogens [J. Natl. Cancer Inst. 84 (1992) 580]. To examine the mechanism of ERbeta action directly, we have similarly created ERbeta stable transfectants in MDA-MB-231 cells. MDA-MB-231 cells were stably transfected with ERbeta cDNA and clones were screened by estrogen response element (ERE)-luciferase assay and ERbeta mRNA expression was quantified by real-time RT-PCR. Three stable MDA-MB-231/ERbeta clones were compared with S30 cells with respect to their growth properties, ability to activate ERE- and activating protein-1 (AP-1) luciferase reporter constructs, and the ability to activate the endogenous ER-regulated transforming growth factor alpha (TGFalpha) gene. ERbeta6 and ERbeta27 clones express 300-400-fold and the ERbeta41 clone express 1600-fold higher ERbeta mRNA levels compared with untransfected MDA-MB-231 cells. Unlike S30 cells, 17beta-estradiol (E2) does not inhibit ERbeta41 cell growth. ERE-luciferase activity is induced six-fold by E2 whereas neither 4-hydroxytamoxifen (4-OHT) nor ICI 182, 780 activated an AP-1-luciferase reporter. TGFalpha mRNA is induced in response to E2, but not in response to 4-OHT. MDA-MB-231/ERbeta clones exhibit distinct characteristics from S30 cells including growth properties and the ability to induce TGFalpha gene expression. Furthermore, ERbeta, at least in the context of the MDA-MB-231 cellular milieu, does not enhance AP-1 activity in the presence of antiestrogens. In summary, the availability of both ERalpha and ERbeta stable breast cancer cell lines now allows us to compare and contrast the long-term consequences of individual signal transduction pathways.
    [Abstract] [Full Text] [Related] [New Search]