These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation.
    Author: Osman A, Niles EG, LoVerde PT.
    Journal: J Biol Chem; 2004 Feb 20; 279(8):6474-86. PubMed ID: 14630909.
    Abstract:
    Members of the transforming growth factor (TGF)-beta superfamily play pivotal roles in cell migration, differentiation, adhesion, pattern formation, and apoptosis. The family of Smad proteins acts as intracellular signal transducers of TGF-beta and related peptides. Smad4, a common mediator Smad (co-Smad), performs a central role in transmitting signals from TGF-beta, BMP, and activins. Schistosoma mansoni receptor-regulated Smad1 and SmSmad2 were previously identified and shown to act in TGF-beta signaling. Herein, we report the identification and characterization of a Smad4 homologue from S. mansoni and provide details about its role in mediation and down-regulation of TGF-beta signaling in schistosomes. In order to identify the schistosome co-Smad, we designed degenerate primers based on the sequence of the conserved MH1/MH2 domains of Smad4 proteins, which were used in PCR to amplify a 137-bp PCR product. A S. mansoni adult worm pair cDNA library was screened resulting in the isolation of a cDNA clone that encodes a 738 amino acid protein (SmSmad4). SmSmad4 was shown to interact with schistosome R-Smads (SmSmad1 and SmSmad2) in vivo and in vitro. The interaction with SmSmad2 was dependent on the receptor-mediated phosphorylation of SmSmad2. In addition, several potential phosphorylation sites for Erk1/2 kinases were identified in the SmSmad4 linker region and shown to be phosphorylated in vitro by an active mutant of mammalian Erk2. Furthermore, Erk-mediated phosphorylation of SmSmad4 decreased its interaction with the receptor-activated form of SmSmad2, in vitro. SmSmad4 was shown to complement a human Smad4 deficiency through the restoration of TGF-beta-responsiveness in MDA-MB-468 breast cancer cells.
    [Abstract] [Full Text] [Related] [New Search]