These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Free and N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells.
    Author: Nishiyama N, Nori A, Malugin A, Kasuya Y, Kopecková P, Kopecek J.
    Journal: Cancer Res; 2003 Nov 15; 63(22):7876-82. PubMed ID: 14633716.
    Abstract:
    The effects of geldanamycin (GA), 17-(3-aminopropylamino)-17-demethoxygeldanamycin (AP-GA), and N-(2-hydroxypropyl)methacrylamide copolymer-AP-GA conjugate [P(AP-GA)] on A2780 human ovarian carcinoma cells at an equitoxic dose (2x IC(50)) were compared by the gene expression array analysis. All treatments resulted in similar gene expression profiles up to 12 h (e.g., down-regulation of CDK4 and up-regulation of APAF-1), although P(AP-GA)-treated cells showed delayed gene expression because of time-dependent internalization of the conjugate and intracellular drug release from P(AP-GA). However, AP-GA-treated cells showed elevated expression of HSP70 and HSP27 after 6 h compared with that observed by GA and P(AP-GA) treatments. Depletion of C-Raf, an HSP90 client protein, was observed in all treatments up to 12 h. Confocal microscopy using mesochlorin e(6) as a model drug revealed that drug release caused by the lysosomal cleavage of glycylphenylalanylleucylglycine oligopeptide spacer, used as GA derivative copolymer attachment/release point, was moderately fast. These results suggested that AP-GA treatment may activate stress-response pathways, whereas P(AP-GA) treatment may suppress them and trigger signaling pathways essential to cell growth arrest and death by inducing an HSP90-active factor. Although GA and P(AP-GA) treatments induced a time-dependent increase in HSP70 and HSP27 protein expression (detected by Western blotting analysis), AP-GA treatment resulted in more rapid and more intense expression of both proteins. Our results suggest that conjugation of AP-GA to N-(2-hydroxypropyl)methacrylamide copolymer may be able to modulate the cell stress responses induced by AP-GA because of differences in its internalization mechanism, subcellular localization, and intracellular concentration gradients.
    [Abstract] [Full Text] [Related] [New Search]