These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deoxyribonucleic acid (DNA) encoding a pan-major histocompatibility complex class II peptide analogue augmented antigen-specific cellular immunity and suppressive effects on tumor growth elicited by DNA vaccine immunotherapy.
    Author: Teramoto K, Kontani K, Ozaki Y, Sawai S, Tezuka N, Nagata T, Fujino S, Itoh Y, Taguchi O, Koide Y, Asai T, Ohkubo I, Ogasawara K.
    Journal: Cancer Res; 2003 Nov 15; 63(22):7920-5. PubMed ID: 14633722.
    Abstract:
    Vaccine immunotherapy must induce helper and cytotoxic cell-mediated immunity to generate the powerful antitumor immune responses needed to suppress cancer progression. We reported previously that a 16-amino acid peptide analogue derived from pigeon cytochrome c can bind broad ranges of MHC class II types and activate helper T cells in mice. To determine whether DNA encoding the Pan-MHC class II IA peptide (Pan-IA) can increase the efficacy of tumor suppression by DNA vaccine immunotherapy targeting tumor antigens, Pan-IA DNA was administered with ovalbumin (OVA) DNA to C57BL/6 mice bearing the OVA-expressing tumor cell line E.G7. Specific proliferative responses to and cytotoxic activities against OVA-expressing targets were induced in mice vaccinated with both OVA and Pan-IA DNA but not in those vaccinated with OVA DNA alone or control DNA plus Pan-IA DNA. Growth of E.G7 cells was suppressed only by combined vaccination with OVA and Pan-IA DNA, and tumors in five of the nine mice that received this combined vaccination were eradicated completely. In those mice, the frequency of CD8-positive T cells reactive with OVA(257-264) peptides in the context of H-2K(b) was significantly increased in the tumor site. Furthermore, immunofluorescent study of the inoculated tumors revealed increased accumulation of both CD4- and CD8-positive T cells producing IFN-gamma in the tumor only by this vaccine protocol. The data suggest that Pan-IA DNA can augment suppressive effects of DNA vaccines on tumor growth by increasing numbers of antigen-specific CTLs and helper T cells. This is the first study in which established tumors have been eradicated successfully by vaccination with DNA corresponding to CTL epitopes and helper T cell epitopes. Our animal model may contribute to the development of therapeutic DNA vaccines against cancer.
    [Abstract] [Full Text] [Related] [New Search]