These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hyperexcitability of CA3 pyramidal cells in mice lacking the potassium channel subunit Kv1.1.
    Author: Lopantsev V, Tempel BL, Schwartzkroin PA.
    Journal: Epilepsia; 2003 Dec; 44(12):1506-12. PubMed ID: 14636320.
    Abstract:
    PURPOSE: To investigate further the membrane properties and postsynaptic potentials of the CA3 pyramidal cells in mice that display spontaneous seizures because of a targeted deletion of the Kcna1 potassium channel gene (encoding the Kv1.1 protein subunit). METHODS: Intracellular recordings were obtained from CA3 pyramidal cells in hippocampal slices prepared from Kcna1-null and control littermates. CA3 pyramidal cells were activated: orthodromically, by stimulating mossy fibers; antidromically, by activating Schaffer collaterals; and by injecting intracellular pulses of current. Responses evoked under these conditions were compared in both genotypes in normal extracellular medium (containing 3 mM potassium) and in medium containing 6 mM potassium. RESULTS: Recordings from CA3 pyramidal cells in Kcna1-null and littermate control slices showed similar membrane and action-potential properties. However, in 33% of cells studied in Kcna1-null slices bathed in normal extracellular medium, orthodromic stimulation evoked synaptically driven bursts of action potentials that followed a short-latency excitatory postsynaptic potential (EPSP)-inhibitory PSP (IPSP) sequence. Such bursts were not seen in cells from control slices. The short-latency gamma-aminobutyric acid (GABA)A-mediated IPSP event appeared similar in null and control slices. When extracellular potassium was elevated and excitatory synaptic transmission was blocked, antidromic activation or short pulses of intracellular depolarizing current evoked voltage-dependent bursts of action potentials in the majority of cells recorded in Kcna1 null slices, but only single spikes in control slices. CONCLUSIONS: Lack of Kv1.1 potassium channel subunits in CA3 pyramidal cells leads to synaptic hyperexcitability, as reflected in the propensity of these cells to generate multiple action potentials. The action-potential burst did not appear to result from loss of GABAA receptor-mediated inhibition. This property of CA3 neurons, seen particularly when tissue conditions become abnormal (e.g., elevated extracellular potassium), helps to explain the high seizure susceptibility of Kcna1-null mice.
    [Abstract] [Full Text] [Related] [New Search]