These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein alpha.
    Author: Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R.
    Journal: Blood Cells Mol Dis; 2003; 31(3):338-41. PubMed ID: 14636649.
    Abstract:
    CCAAT/enhancer binding protein alpha (C/EBPalpha)-ER induces 32Dcl3 neutrophilic differentiation and inhibits 32DPKCdelta maturation to macrophages in response to phorbol ester. In 32Dcl3 cells, C/EBPalpha-ER rapidly induces the PU.1 and C/EBPalpha RNAs even in the presence of cycloheximide, suggesting that these are direct C/EBPalpha genetic targets. C/EBPalpha strongly binds and modestly activates the murine PU.1 promoter via an evolutionarily conserved binding site. C/EBPalpha-ER variants incapable of binding DNA still slow G1 progression but do not induce differentiation. N-terminally truncated C/EBPalpha variants, including the p30 isoform expressed in a subset of AMLs, also retain the ability to slow 32D cl3 proliferation, whereas the C/EBPalpha(BRM2)-ER variant does not slow G1 progression, has a reduced capacity to induce early granulocytic markers, and does not induce terminal maturation. In 32DPKCdelta cells, C/EBPalpha-ER strongly inhibits endogenous or exogenous JunB induction, dependent upon the outer surface of the C/EBPalpha basic region, but does not inhibit c-Jun, PU.1, or C/EBPbeta expression. Exogenous JunB restores AP-1 DNA binding but does not overcome inhibition of monopoiesis by C/EBPalpha-ER. In summary, we propose that while C/EBPalpha is required for development of immature granulocyte-monocyte progenitors, C/EBPalpha subsequently inhibits monopoiesis, via inhibition of JunB express and via additional activities, and induces granulopoiesis, via induction of PU.1, C/EBPepsilon, and cell cycle arrest.
    [Abstract] [Full Text] [Related] [New Search]