These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole.
    Author: Joyce JN, Presgraves S, Renish L, Borwege S, Osredkar T, Hagner D, Replogle M, PazSoldan M, Millan MJ.
    Journal: Exp Neurol; 2003 Nov; 184(1):393-407. PubMed ID: 14637109.
    Abstract:
    The novel naphtoxazine derivative and preferential D(3) vs D(2) receptor agonist, S32504, restores perturbed motor function in rodent and primate models of antiparkinsonian activity with a potency superior to those of two further, preferential D(3) receptor agonists, pramipexole and ropinirole. However, potential neuroprotective properties of S32054 have not, to date, been evaluated. Herein, employing several measures of cellular integrity, we demonstrate that S32504 robustly, concentration-dependently and completely protects terminally differentiated SH-SY5Y cells against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in vitro. Further, S32504 was substantially more potent than pramipexole and ropinirole, the latter of which was neurotoxic at high concentrations. In vivo, subchronic treatment with low (0.25 mg/kg) and high (2.5 mg/kg) doses of S32504 prior to and during treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP, provided complete protection against MPTP-induced tyrosine hydroxylase immunoreactive (TH-IR) neuronal death in the substantia nigra pars compacta and ventral tegmental area. A high dose of ropinirole (2.5 mg/kg) provided some protection but statistical significance was not attained, and a low dose (0.25 mg/kg) was ineffective. Neither drug afforded protection against the MPTP-induced loss of DA fibers in the striatum, as measured by TH-IR and dopamine transporter immunoreactive fiber counts. In conclusion, the novel naphotoxazine and dopaminergic agonist, S32504, robustly protects dopaminergic neurones against the neurotoxic effects of MPP(+) and MPTP in in vitro and in vivo models, respectively. The underlying mechanisms and therapeutic pertinence of these actions will be of interest to further evaluate in view of its potent actions in behavioral models of antiparkinson activity.
    [Abstract] [Full Text] [Related] [New Search]