These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Steroid structural requirements for stabilizing or disrupting lipid domains. Author: Wenz JJ, Barrantes FJ. Journal: Biochemistry; 2003 Dec 09; 42(48):14267-76. PubMed ID: 14640695. Abstract: In artificial membrane bilayers, saturated long acyl chain-containing phospholipids and cholesterol (Chol) interact to form more ordered domains than those in phospholipids with unsaturated or short fatty acyl chains. We have extended the fluorescence techniques of London et al. [Xu, X., and London, E. (2000) Biochemistry 39, 843-849; Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilchezes, C., and London, E. (2001) J. Biol. Chem. 276, 33540-33546] to study the propensity of several steroids to form or disrupt such ordered lipid domains. Temperature-dependent fluorescence quenching and steady-state polarization of the extrinsic fluorescent probe diphenylhexatriene (DPH) in model membranes composed of dipalmitoylphosphatidylcholine (or sphingomyelin), a nitroxide spin-labeled phosphatidylcholine (12-SLPC), and a given steroid were combined to study the influence of the latter on (a) ordered lipid domain formation, (b) stabilization, and (c) the extension of the ordered lipid assemblies. The results of the two totally independent methods, fluorescence quenching by 12-SLPC and fluorescence polarization of DPH, show that all steroids examined, except for Chol and 25-hydroycholesterol, behave as lipid domain-disrupting compounds. Additionally, we found a positive correlation between the hydrophobicity of steroids and their ordered lipid domain-promoting activity. Comparison of the chemical structures disclosed some distinctive traits of ordered lipid domain-promoting steroids: (i) the presence of an isooctyl side chain bond at C17; (ii) the absence of carbons attached to C23 (i.e., C24-C27) in any of the other (domain-disrupting) steroids; (iii) the presence of a small polar group at position C3; and (iv) the absence of polar groups in the fused rings, with the exception of substitutions at position C3 in the A ring.[Abstract] [Full Text] [Related] [New Search]