These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural characterization and detection of kale flavonoids by electrospray ionization mass spectrometry.
    Author: Zhang J, Satterfield MB, Brodbelt JS, Britz SJ, Clevidence B, Novotny JA.
    Journal: Anal Chem; 2003 Dec 01; 75(23):6401-7. PubMed ID: 14640707.
    Abstract:
    Sensitive and precise analytical methods are needed for flavonols, a subclass of flavonoids that has strong antioxidant activity. We report an improved method for identifying the predominant flavonols, quercetin and kaempferol, by collisionally activated dissociation (CAD) and quantifying them by high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) in the selected ion monitoring mode. Practical applications of the method were demonstrated using several kale and biological samples. Two commercial kale samples were found to have 77 or 244 ppm quercetin and 235 or 347 ppm kaempferol (ppm = microg of quercetin/g of kale or microg of kaempferol/g of kale by fresh weight, 5-15% relative standard deviation). Blanching was found to reduce the flavonols to approximately 60% of the levels found in the unblanched kale. Isotopically labeled kale (cultivar Vates) grown in a greenhouse under an atmosphere of (13)CO(2) was found to have much lower flavonol levels. UV-A and UV-B supplementation during kale growth in the greenhouse was found to enhance both quercetin and kaempferol levels in Vates kale. The UV-B-supplemented kale not only produced more flavonols but the quercetin-to-kaempferol ratio was also higher than the UV-A-supplemented or the nonsupplemented kale. Recovery of flavonols from kale was approximately 60% based on spike and recovery trials with rutin, a glycoside of quercetin. Recovery of flavonols from biological samples spiked with rutin ranged from 96% for urine to 70% for plasma. Compared to UV detection, ESI-MS in the deprotonation mode provided lower detection limits, and both higher sensitivity and selectivity, in addition to structural characterization of the kale flavonols by CAD.
    [Abstract] [Full Text] [Related] [New Search]