These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of NK1 receptors in the midbrain periaqueductal gray upon defensive rage and predatory attack in the cat. Author: Gregg TR, Siegel A. Journal: Brain Res; 2003 Dec 19; 994(1):55-66. PubMed ID: 14642448. Abstract: This study utilized anatomical and behavioral-pharmacological methods to determine the role of NK(1)-Substance P receptors in the midbrain periaqueductal gray (PAG) in defensive rage behavior in cats. For behavioral pharmacological experiments, monopolar stimulating electrodes were implanted in the medial hypothalamus for elicitation of defensive rage behavior and cannula-electrodes were implanted in the PAG for microinjections of receptor compounds. Microinjections of the NMDA antagonist, AP-7 (2 nmol), into the dorsal PAG blocked defensive rage elicited by medial hypothalamic stimulation, thus establishing the PAG as a synaptic region that receives hypothalamic inputs linked to defensive rage behavior. Microinjections of the NK(1) agonist, GR73632, into the same injection sites facilitated defensive rage in a dose-dependent manner, and also induced spontaneous hissing in five cats. The effects of GR73632 were reduced by pretreatment of the PAG with the NK(1) antagonist, GR82334 (16 nmol), microinjected into the same sites. Microinjections of GR73632 (8 nmol) into the PAG also suppressed predatory attack elicited by stimulation of the lateral hypothalamus. Immunohistochemical methods utilized to detect Substance P and Fos immunoreactivity revealed that neurons in the PAG activated after defensive rage-inducing medial hypothalamic stimulation lie in the same region as Substance-P-immunoreactive processes. Fos immunoreactivity was highest in the dorsomedial aspect of the rostral PAG after medial hypothalamic stimulation. Cats that were unstimulated or that exhibited predatory attack after lateral hypothalamic stimulation had low c-fos expression levels in the PAG. Substance P immunoreactivity was high throughout the dorsal PAG. The results indicate that NK(1) receptors in the PAG potentiate defensive rage and suppress predatory aggression in the cat.[Abstract] [Full Text] [Related] [New Search]