These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Controlled release of estradiol solubilized in carbopol/surfactant aggregates.
    Author: Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A.
    Journal: J Control Release; 2003 Dec 12; 93(3):319-30. PubMed ID: 14644582.
    Abstract:
    The potential of carbopol/surfactant dispersions as solubilizing and controlled release systems of estradiol (a poorly water-soluble drug) was evaluated. The solubilization of estradiol in the dispersions of Carbopol 934 (0.25%) and Pluronic F-127, Tween 80, sodium dodecylsulfate (SDS), or benzalkonium chloride (BkCl) was assessed, by differential scanning calorimetry (DSC) of films obtained by desiccation, as a decrease in estradiol melting temperature and enthalpy. The amounts of estradiol solubilized in carbopol/SDS and carbopol/Tween 80 aqueous dispersions were considerably greater (solubilization capacity: 1.3 and 9 times greater) than in the surfactant alone solutions and up to 100 times greater than in water. High aggregates/water equilibrium partition coefficients of estradiol in carbopol/SDS (1768 M(-1)) and carbopol/Tween 80 (14114 M(-1)) dispersions were found. Carbopol/(1%) SDS/(25 mg/dl) estradiol and carbopol/(0.1%) Tween 80/(5 mg/dl) estradiol dispersions had a pH of around 4, were easy flowing, and showed sustained release for at least 1 week. Estradiol diffusion coefficients were greater when the receptor medium was 0.3-1.0% SDS solution than when it was iso-osmotic NaCl solution or pH 7.5 phosphate buffer. At this pH, a viscoelastic gel is formed on the donor side of the membrane and the drug diffusion slowed down. When the receptor medium contains a surfactant, estradiol release seems to happen as a direct exchange between the carbopol/surfactant aggregates and the receptor surfactant micelles. If no surfactant is in the receptor fluid, estradiol/surfactant complexes migrate towards the receptor. Despite the low viscosity of these dispersions, estradiol diffusion coefficients were in the same order of magnitude as those obtained with a commercially available neutralized ethanol/water carbopol gel of estradiol (60 mg/dl). When the receptor medium had no surfactant, the low affinity of estradiol for water prevented drug diffusion from the commercial formulation. In summary, carbopol/surfactant aggregates act as efficient carriers of hydrophobic drugs; the affinity of estradiol for carbopol/surfactant aggregates, their dissociation, and the diffusivity of estradiol/surfactant complexes being key factors in the control of the drug release process.
    [Abstract] [Full Text] [Related] [New Search]