These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Author: Wang S, El-Deiry WS. Journal: Proc Natl Acad Sci U S A; 2003 Dec 09; 100(25):15095-100. PubMed ID: 14645705. Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits specific tumoricidal activity and is under development for cancer therapy. Mismatch-repair-deficient colonic tumors evade TRAIL-induced apoptosis through mutational inactivation of Bax, but chemotherapeutics including Camptosar (CPT-11) restore TRAIL sensitivity. However, the signaling pathways in restoring TRAIL sensitivity remain to be elucidated. Here, we imaged p53 transcriptional activity in Bax-/- carcinomas by using bioluminescence, in vivo, and find that p53 is required for sensitization to TRAIL by CPT-11. Small interfering RNAs directed at proapoptotic p53 targets reveal TRAIL receptor KILLER/DR5 contributes significantly to TRAIL sensitization, whereas Bak plays a minor role. Caspase 8 inhibition protects both CPT-11 pretreated wild-type and Bax-/- HCT116 cells from TRAIL-induced apoptosis, whereas caspase 9 inhibition only rescued the wild-type HCT116 cells from death induced by TRAIL. The results suggest a conversion in the apoptotic mechanism in HCT116 colon carcinoma from a type II pathway involving Bax and the mitochondria to a type I pathway involving efficient extrinsic pathway caspase activation. In contrast to Bax-/- cells, Bak-deficient human cancers undergo apoptosis in response to TRAIL or CPT-11, implying that these proteins have nonoverlapping functions. Our studies elucidate a mechanism for restoration of TRAIL sensitivity in MMR-deficient Bax-/- human cancers through p53-dependent activation of KILLER/DR5 and reconstitution of a type I death pathway. Efforts to identify agents that up-regulate DR5 may be useful in cancer therapies restoring TRAIL sensitivity.[Abstract] [Full Text] [Related] [New Search]