These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein synthesis within neuronal growth cones. Author: Davis L, Dou P, DeWit M, Kater SB. Journal: J Neurosci; 1992 Dec; 12(12):4867-77. PubMed ID: 1464771. Abstract: This study investigates the capacity of neuronal growth cones to synthesize protein locally and independently of their cell body. Isolated growth cones were prepared from cultures of neurons from the snail Helisoma by transecting neurites proximal to the growth cone. The capacity for protein synthesis was tested by radiolabeling cultures with 3H-leucine and analyzing the resultant autoradiograms. Isolated growth cones displayed incorporation of 3H-leucine that was inhibited by treatment with the protein synthesis inhibitors anisomycin and pactamycin, indicating that ribosomal-dependent translation occurs in growth cones. Ultrastructural analyses of growth cones demonstrated the presence of polyribosomes, the machinery for protein synthesis. The density of polyribosomes varied between growth cones, even between different growth cones on the same neuron, suggesting that growth cones express a range of protein synthetic capabilities. That different types of growth cones possess differing capabilities for protein synthesis is suggested in autoradiograms of 3H-leucine incorporation by the growth cones of axonal and nonaxonal neurites; incorporation was radically reduced in axonal growth cones in comparison with non-axonal growth cones. Finally, growth cones that were isolated for 2 d prior to radiolabeling incorporate 3H-leucine in a eukaryotic ribosomal-dependent manner, suggesting that the capacity for translation is long-lived in growth cones. Taken together, these studies reveal a capacity for protein synthesis confined totally to the neuronal growth cone proper. The synthesis of proteins in growth cones could afford a mechanism for the alteration of growth cone structure or function. This is in accord with the view that growth cones participate autonomously, to at least some extent, in the processes of synaptogenesis and the construction of neuronal architecture.[Abstract] [Full Text] [Related] [New Search]