These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of CYP2D6*10B genotype on pharmacokinetics of propafenone enantiomers in Chinese subjects.
    Author: Chen B, Cai WM.
    Journal: Acta Pharmacol Sin; 2003 Dec; 24(12):1277-80. PubMed ID: 14653957.
    Abstract:
    AIM: To study the relationship between genotype of CYP2D6*10B and pharmacokinetics of propafenone enantiomers. METHODS: Genotype of 17 healthy Chinese HAN subjects was determined by an allele specific amplification method. The blood samples (0-15 h) of the subjects were taken after oral administration of a single dose (400 mg) of propafenone hydrochloride. Concentrations of propafenone enantiomers in plasma were measured by a reverse-phase HPLC with precolumn derivatization. RESULTS: Seventeen subjects characterized for CYP2D6*10B genotype included (*1/*1) (n=4), (*1/*10) (n=5) and (*10/*10) (n=8). The metabolic ratios (lg MR) of the three genotypes were -2.68+/-0.23, -2.2+/-0.7, and -1.1+/-0.5, respectively. The AUC of the three groups were (1534+/-334), (1891+/-793), (3171+/-1075) microg.h.L(-1) for S-enantiomer and (1136+/-345), (1467+/-817), (2277+/-745) microg.h.L(-1) for R-enantiomer, respectively. The AUC of propafenone enantiomers in *10/*10 is about 1.5-2 times of that of *1/*10 group or *1/*1 group, and the CL of both enantiomers in *10/*10 is only half of that of *1/*10 group or *1/*1 group (P<0.05). CONCLUSION: CYP2D6*10B alleles induce the declined activity of CYP2D6 and impair the metabolism of propafenone.
    [Abstract] [Full Text] [Related] [New Search]