These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opposite long-term regulation of c-Myc and p27Kip1 through overactivation of Raf-1 and the MEK/ERK module in proliferating human choroidal melanoma cells.
    Author: Lefevre G, Calipel A, Mouriaux F, Hecquet C, Malecaze F, Mascarelli F.
    Journal: Oncogene; 2003 Dec 04; 22(55):8813-22. PubMed ID: 14654778.
    Abstract:
    Although there is no current evidence for ras gene mutation in choroidal melanoma, there is an increasing body of evidence indicating that deregulated intracellular signalling pathways are involved in choroidal melanoma pathogenesis. The various components of the linear Raf/MEK/ERK signalling pathway have been implicated in various tumours. We therefore investigated the role of Raf-1 and the MEK/ERK module in the proliferation of human normal choroidal melanocytes (NCM) and cells from the ocular choroidal melanoma (OCM-1) cell line. OCM-1 cells proliferated four times faster than NCM. High basal activation of the MEK/ERK module was observed in unstimulated OCM-1 cells, whereas rapid and persistent activation was detected after serum stimulation, throughout the 24-h period of culture. In contrast, the activation of MEK/ERK was barely detectable in unstimulated NCM and occurred late (6 h) after the stimulation of cell proliferation. Inhibition of Raf-1 and MEK1/2 activation by pharmacological approaches and of the production of Raf-1 and ERK1/2 by antisense oligonucleotide approaches demonstrated that Raf-1 and the MEK/ERK module controlled proliferation in OCM-1 cells, but not in NCM. OCM-1 cells produced very low levels of p27Kip1, whereas NCM produced constant, high levels of p27Kip1. The inhibition of Raf-1 or MEK1/2 induced a large increase in p27Kip1 in OCM-1 cells, associated with an arrest of cell proliferation. Levels of c-Myc production were high and constant in OCM-1 cells and low in NCM, in contrast to what was observed for p27Kip1. The inhibition of both Raf-1 and MEK1/2 induced a decrease in c-Myc production and downregulated c-Myc activity by preventing c-Myc phosphorylation in OCM-1 cells. We conclude that Raf-1 and the MEK/ERK module control the production of both p27Kip1 and c-Myc, and the activation of c-Myc for OCM-1 cell proliferation.
    [Abstract] [Full Text] [Related] [New Search]