These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoperiod and bromocriptine treatment effects on expression of prolactin receptor mRNA in bovine liver, mammary gland and peripheral blood lymphocytes. Author: Auchtung TL, Kendall PE, Salak-Johnson JL, McFadden TB, Dahl GE. Journal: J Endocrinol; 2003 Dec; 179(3):347-56. PubMed ID: 14656204. Abstract: Recent evidence suggests that photoperiod influences immune function. Interestingly, photoperiod has profound effects on concentrations of prolactin (PRL), a hormone also known to be involved in fluctuations of the immune system. However, the impact of photoperiod on PRL receptor (PRL-R) expression is poorly understood, particularly in tIssues of the immune system. Two experiments were performed to increase the general understanding of how photoperiod interacts with the immune system. Our first objective was to determine the effects of photoperiod on PRL-R mRNA expression and cellular immune function. Lymphocytes were isolated from blood collected from calves (n=10) and PRL-R mRNA expression of both long and short forms was quantified using real-time PCR. Lymphocytes expressed PRL-R mRNA, suggesting that PRL could act directly on these cells. To determine the relationship between photoperiod and PRL-R mRNA expression in other tIssues, hepatic and mammary biopsies were collected after calves were exposed to long days (LDPP; 16 h light:8 h darkness) or short days (SDPP; 8 h light:16 h darkness). Relative to LDPP, SDPP decreased circulating PRL, but increased expression of both forms of PRL-R mRNA in liver, mammary gland and lymphocytes. Short days also increased lymphocyte proliferation compared with long days. Reversal of photoperiodic treatments reversed the effects on circulating PRL, PRL-R mRNA expression and lymphocyte proliferation. Our second objective was to manipulate PRL concentration in photoperiod-treated animals, using bromocriptine. Concentrations of PRL in LDPP animals injected daily with bromocriptine for 1 week were decreased compared with LDPP controls, to a level similar to SDPP animals. Receptor expression was increased in LDPP+bromocriptine-treated animals relative to LDPP controls, as was lymphocyte proliferation. Overall, our results indicate that photoperiodic effects on PRL-R mRNA expression were inverse to those on circulating PRL, with short days stimulating expression of both forms of PRL-R mRNA. Expression of PRL-R mRNA changed in the same direction as lymphocyte proliferation with regard to photoperiod treatment, suggesting a link between photoperiodic effects on PRL sensitivity and immune function. Thus, PRL signaling may mediate photoperiodic effects on immune function.[Abstract] [Full Text] [Related] [New Search]