These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold.
    Author: Rafferty JB, Bolt EL, Muranova TA, Sedelnikova SE, Leonard P, Pasquo A, Baker PJ, Rice DW, Sharples GJ, Lloyd RG.
    Journal: Structure; 2003 Dec; 11(12):1557-67. PubMed ID: 14656440.
    Abstract:
    Holliday junction resolution performed by a variety of structure-specific endonucleases is a key step in DNA recombination and repair. It is believed that all resolvases carry out their reaction chemistries in a similar fashion, utilizing a divalent cation to facilitate the hydrolysis of the phosphodiester backbone of the DNA, but their architecture varies. To date, with the exception of bacteriophage T4 endonuclease VII, each of the known resolvase enzyme structures has been categorized into one of two families: the integrases and the nucleases. We have now determined the structure of the Escherichia coli RusA Holliday junction resolvase, which reveals a fourth structural class for these enzymes. The structure suggests that dimer formation is essential for Mg(2+) cation binding and hence catalysis and that like the other resolvases, RusA distorts its Holliday junction target upon binding. Key residues identified by mutagenesis experiments are well positioned to interact with the DNA.
    [Abstract] [Full Text] [Related] [New Search]