These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Light adaptation and color opponency of horizontal cells in the turtle retina. Author: Twig G, Levy H, Weiner E, Perlman I. Journal: Vis Neurosci; 2003; 20(4):437-52. PubMed ID: 14658772. Abstract: Chromaticity-type (C-type) horizontal cells of the turtle retina receive antagonistic inputs from cones of different spectral types, and therefore their response to background illumination is expected to reflect light adaptation of the cones and the interactions between their antagonistic inputs. Our goal was to study the behavior of C-type horizontal cells during background illumination and to evaluate the role of wavelength in background adaptation. The photoresponses of C-type horizontal cells were recorded intracellularly in the everted eyecup preparation of the turtle Mauremys caspica during chromatic background illuminations. The voltage range of operation was either reduced or augmented, depending upon the wavelengths of the background and of the light stimuli, while the sensitivity to light was decreased by any background. The response-intensity curves were shifted to brighter intensities and became steeper as the background lights were made brighter regardless of wavelength. Comparing the effects of cone iso-luminant backgrounds on the Red/Green C-type horizontal cells indicated that background desensitization in these cells could not solely reflect background adaptation of cones but also depend upon response compression/expansion and changes in synaptic transmission. This leads to wavelength dependency of background adaptation in C-type horizontal cells, that is expressed as increased light sensitivity (smaller threshold elevation) and improved suprathreshold contrast detection when the wavelengths of the background and light stimuli were chosen to exert opponent effects on membrane potential.[Abstract] [Full Text] [Related] [New Search]