These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystal structure and conformational analysis of ampullosporin A. Author: Kronen M, Görls H, Nguyen HH, Reissmann S, Bohl M, Sühnel J, Gräfe U. Journal: J Pept Sci; 2003; 9(11-12):729-44. PubMed ID: 14658792. Abstract: Ampullosporin A is a 15-mer peptaibol type polypeptide that induces pigment formation by the fungus Phoma destructiva, forms voltage-dependent ion channels in membranes and exhibits hypothermic effects in mice. The structure of ampullosporin A has been determined by x-ray crystallography. This is the first three-dimensional (3D) structure of the peptaibol subfamily SF6. From the N-terminus to residue 13 the molecule adopts an approximate right-handed alpha-helical geometry, whereas a less regular structure pattern with beta-turn characteristics is found in the C-terminus. Even though ampullosporin A does not contain a single proline or hydroxyproline it is significantly bent. It belongs to both the shortest and the most strongly bent peptaibol 3D structures. The straight structure part encompasses residues Ac-Trp(1)-Aib(10) and is thus less extended than the alpha-helical subunit. The 3D structure of ampullosporin A is discussed in relation to other experimentally determined peptaibol structures and in the context of its channel-forming properties. As a part of this comparison a novel bending analysis based on a 3D curvilinear axis describing the global structural characteristics has been proposed and applied to all 3D peptaibol structures. A sampling of 2500 conformations using different molecular dynamics protocols yields, for the complete ampullosporin A structure, an alpha-helix as the preferred conformation in vacuo with almost no bend. This indicates that solvent or crystal effects may be important for the experimentally observed peptide backbone bending characteristics of ampullosporin A.[Abstract] [Full Text] [Related] [New Search]