These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. Author: Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, Díaz-Araya G, Jaimovich E, Lavandero S. Journal: J Biol Chem; 2004 Feb 27; 279(9):7554-65. PubMed ID: 14660553. Abstract: In the heart, insulin-like growth factor-1 (IGF-1) is a pro-hypertrophic and anti-apoptotic peptide. In cultured rat cardiomyocytes, IGF-1 induced a fast and transient increase in Ca(2+)(i) levels apparent both in the nucleus and cytosol, releasing this ion from intracellular stores through an inositol 1,4,5-trisphosphate (IP(3))-dependent signaling pathway. Intracellular IP(3) levels increased after IGF-1 stimulation in both the presence and absence of extracellular Ca(2+). A different spatial distribution of IP(3) receptor isoforms in cardiomyocytes was found. Ryanodine did not prevent the IGF-1-induced increase of Ca(2+)(i) levels but inhibited the basal and spontaneous Ca(2+)(i) oscillations observed when cardiac myocytes were incubated in Ca(2+)-containing resting media. Spatial analysis of fluorescence images of IGF-1-stimulated cardiomyocytes incubated in Ca(2+)-containing resting media showed an early increase in Ca(2+)(i), initially localized in the nucleus. Calcium imaging suggested that part of the Ca(2+) released by stimulation with IGF-1 was initially contained in the perinuclear region. The IGF-1-induced increase on Ca(2+)(i) levels was prevented by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, xestospongin C, 2-aminoethoxy diphenyl borate, U-73122, pertussis toxin, and betaARKct (a peptide inhibitor of Gbetagamma signaling). Pertussis toxin also prevented the IGF-1-dependent IP(3) mass increase. Genistein treatment largely decreased the IGF-1-induced changes in both Ca(2+)(i) and IP(3). LY29402 (but not PD98059) also prevented the IGF-1-dependent Ca(2+)(i) increase. Both pertussis toxin and U73122 prevented the IGF-1-dependent induction of both ERKs and protein kinase B. We conclude that IGF-1 increases Ca(2+)(i) levels in cultured cardiac myocytes through a Gbetagamma subunit of a pertussis toxin-sensitive G protein-PI3K-phospholipase C signaling pathway that involves participation of IP(3).[Abstract] [Full Text] [Related] [New Search]