These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Factor Va is inactivated by activated protein C in the absence of cleavage sites at Arg-306, Arg-506, and Arg-679.
    Author: van der Neut Kolfschoten M, Dirven RJ, Vos HL, Tans G, Rosing J, Bertina RM.
    Journal: J Biol Chem; 2004 Feb 20; 279(8):6567-75. PubMed ID: 14660667.
    Abstract:
    Activated protein C (APC) exerts its anticoagulant activity via proteolytic degradation of the heavy chains of activated factor VIII (FVIIIa) and activated factor V (FVa). So far, three APC cleavage sites have been identified in the heavy chain of FVa: Arg-306, Arg-506, and Arg-679. To obtain more insight in the structural and functional implications of each individual cleavage, recombinant factor V (rFV) mutants were constructed in which two or three of the APC cleavage sites were mutated. After expression in COS-1 cells, rFV mutants were purified, activated with thrombin, and inactivated by APC. During this study we observed that activated rFV-GQA (rFVa-GQA), in which the arginines at positions 306, 506, and 679 were replaced by glycine, glutamine, and alanine, respectively, was still inactivated by APC. Further analysis showed that the inactivation of rFVa-GQA by APC was phospholipid-dependent and sensitive to an inhibitory monoclonal antibody against protein C. Inactivation proceeded via a rapid phase (kx1=5.4 x 10(4) M(-1) s(-1)) and a slow phase (kx2=3.2 x 10(3) M(-1) s(-1)). Analysis of the inactivation curves showed that the rapid phase yielded a reaction intermediate that retained approximately 80% of the original FVa activity, whereas the slow cleavage resulted in formation of a completely inactive reaction product. Inactivation of rFVa-GQA was accelerated by protein S, most likely via stimulation of the slow phase. Immunoblot analysis using a monoclonal antibody recognizing an epitope between Arg-306 and Arg-506 indicated that during the rapid phase of inactivation a fragment of 80 kDa was generated that resulted from cleavage at a residue very close to Arg-506. The slow phase was associated with the formation of fragments resulting from cleavage at a residue 1.5-2 kDa carboxyl-terminal to Arg-306. Our observations may explain the unexpectedly mild APC resistance associated with mutations at Arg-306 (FV HongKong and FV Cambridge) in the heavy chain of FV.
    [Abstract] [Full Text] [Related] [New Search]