These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Author: Gordon KA, Papsin BC, Harrison RV. Journal: Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348. Abstract: OBJECTIVES: 1) To determine if a period of early auditory deprivation influences neural activity patterns as revealed by human auditory brain stem potentials evoked by electrical stimulation from a cochlear implant. 2) To examine the potential for plasticity in the human auditory brain stem. Specifically, we asked if electrically evoked auditory potentials from the auditory nerve and brain stem in children show evidence of development as a result of implant use. 3) To assess whether a sensitive or critical period exists in auditory brain stem development. Specifically, is there an age of implantation after which there are no longer developmental changes in auditory brain stem activity as revealed by electrically evoked potentials? DESIGN: The electrically evoked compound potential of the auditory nerve (ECAP) and the electrically evoked auditory brain stem response (EABR) were recorded repeatedly during the first year of implant use in each of 50 children. The children all had pre- or peri-lingual onset of severe to profound sensorineural hearing loss and received their implants at ages ranging from 12 mo to 17 yr. All children received Nucleus cochlear implant devices. All children were in therapy and in school programs that emphasized listening and required the children to wear their implants consistently. RESULTS: Initial stimulation from the cochlear implant evoked clear responses from the auditory nerve and auditory brain stem in most children. There was no correlation between minimum latency, maximum amplitude, or slope of amplitude growth of initial responses with age at implantation for ECAP eN1, EABR eIII and eV components (p > 0.05). During the first year of implant use, minimum latency of these waves significantly decreased (p < 0.01, p < 0.0001, p < 0.0001, respectively). Neural conduction time, measured using the interwave latency of ECAP eN1-EABR eIII for lower brain stem and EABR eIII-eV for upper brain stem, decreased during the period of 6 to 12 mo of cochlear implant use (p < 0.01 (lower), p < 0.0001(upper)). The ECAP wave eN1 and the EABR wave eV showed significant increases in amplitude during time of implant use (p < 0.05 and p < 0.01, respectively). There were no correlations between the rate of interwave latency decrease and the rate of amplitude increases and the age at which children underwent implantation (p < 0.05). CONCLUSIONS: Activity in the auditory pathways to the level of the midbrain can be evoked by acute stimulation from a cochlear implant. EABR measures are not influenced by any period of auditory deprivation. Auditory development proceeds once the implant is activated and involves improvements in neural conduction velocity and neural synchrony. Underlying mechanisms likely include improvements in synaptic efficacy and possibly increased myelination. The developmental plasticity that we have shown in the human auditory brain stem does not appear from EABR data to be limited by a critical period during childhood.[Abstract] [Full Text] [Related] [New Search]