These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The suprachiasmatic nucleus: a clock of multiple components. Author: Lee HS, Billings HJ, Lehman MN. Journal: J Biol Rhythms; 2003 Dec; 18(6):435-49. PubMed ID: 14667145. Abstract: Although impressive progress has been made in understanding the molecular basis of pacemaker function in the suprachiasmatic nucleus (SCN), fundamental questions about cellular and regional heterogeneity within the SCN, and how this heterogeneity might contribute to SCN pacemaker function at a tissue level, have remained unresolved. To reexamine cellular and regional heterogeneity within the SCN, the authors have focused on two key questions: which SCN cells are endogenously rhythmic and/or directly light responsive? Observations of endogenous rhythms of electrical activity, gene/protein expression, and protein phosphorylation suggest that the SCN in mammals examined to date is composed of anatomically distinct rhythmic and nonrhythmic components. Endogenously rhythmic neurons are primarily found in rostral, dorsomedial, and ventromedial portions of the nucleus; at mid and caudal levels, the distribution of endogenously rhythmic cells in the SCN has the appearance of a "shell." The majority of nonrhythmic cells, by contrast, are located in a central "core" region of the SCN, which is complementary to the shell. The location of light-responsive cells, defined by direct retinohypothalamic input and light-induced gene expression, largely overlaps the location of nonrhythmic cells in the SCN core, although, in hamsters and mice light-responsive cells are also present in the ventral portion of the rhythmic shell. While the relative positions of rhythmic and light-responsive components of the SCN are similar between species, the precise boundaries of these components, and neurochemical phenotype of cells within them, are variable. Intercellular communication between these components may be a key feature responsible for the unique pacemaker properties of the SCN observed at a tissue and whole animal level.[Abstract] [Full Text] [Related] [New Search]