These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats.
    Author: Liaw WJ, Zhang B, Tao F, Yaster M, Johns RA, Tao YX.
    Journal: Neuroscience; 2004; 123(1):11-5. PubMed ID: 14667437.
    Abstract:
    The activation of spinal cord N-methyl-D-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA receptors at neuronal synapses. The current study investigated the possible involvement of PSD-95 in the development of opioid tolerance. Opioid tolerance was induced by intrathecal injection of morphine sulfate (20 microg/10 microl) twice a day for 4 consecutive days. Co-administration of morphine twice daily and PSD-95 antisense oligodeoxynucleotide (50 microg/10 microl) once daily for 4 days not only markedly reduced the PSD-95 expression and its binding to NMDA receptors in spinal cord but also significantly prevented the development of morphine tolerance. In contrast, co-administration of morphine twice daily and PSD-95 missense oligodeoxynucleotide (50 microg/10 microl) once daily for 4 days did not produce these effects. The PSD-95 antisense oligodeoxynucleotide at the doses we used did not affect baseline response to noxious thermal stimulation or locomotor function. The present study indicates that the deficiency of spinal cord PSD-95 attenuates the development of opioid tolerance. These results suggest that PSD-95 might be involved in the central mechanisms of opioid tolerance and provide a possible new target for prevention of development of opioid tolerance.
    [Abstract] [Full Text] [Related] [New Search]