These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myosin light chain phosphorylation and pulmonary endothelial cell hyperpermeability in burns. Author: Tinsley JH, Teasdale NR, Yuan SY. Journal: Am J Physiol Lung Cell Mol Physiol; 2004 Apr; 286(4):L841-7. PubMed ID: 14672924. Abstract: Major cutaneous burns result in not only localized tissue damage but broad systemic inflammation causing organ system damage distal to the burn site. It is well recognized that many problems result from the release of inflammatory mediators that target vascular endothelial cells, causing organ dysfunction. The pulmonary microvessels are particularly susceptible to functional abnormalities as a direct consequence of exposure to burn-induced inflammatory mediators. Traditional therapeutic intervention is quite often ineffective in treating burn patients suffering from systemic problems. A possible explanation for this ineffectiveness may be that because so many mediators are released, supposedly activating numerous signaling cascades that interact with each other, targeting of upstream factors in these cascades on an individual basis becomes futile. Therefore, if an end-point effector responsible for endothelial dysfunction following burn injury could be identified, it may present a target for intervention. In this study, we identified phosphorylation of myosin light chain (MLC) as a required element of burn plasma-induced hyperpermeability across rat lung microvascular endothelial cell monolayers. In addition, pharmacological inhibition of myosin light chain kinase (MLCK) and Rho kinase as well as transfection of MLCK-inhibiting peptide blocked actin stress fiber formation and MLC phosphorylation in response to burn plasma. The results suggest that blocking MLC phosphorylation may provide therapeutic intervention in burn patients with the goal of alleviating systemic inflammation-induced endothelial dysfunction.[Abstract] [Full Text] [Related] [New Search]