These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Basolateral Na+-dependent HCO3- transporter NBCn1-mediated HCO3- influx in rat medullary thick ascending limb.
    Author: Odgaard E, Jakobsen JK, Frische S, Praetorius J, Nielsen S, Aalkjaer C, Leipziger J.
    Journal: J Physiol; 2004 Feb 15; 555(Pt 1):205-18. PubMed ID: 14673192.
    Abstract:
    The electroneutral Na(+)-dependent HCO3- transporter NBCn1 is strongly expressed in the basolateral membrane of rat medullary thick ascending limb cells (mTAL) and is up-regulated during NH4(+)-induced metabolic acidosis. Here we used in vitro perfusion and BCECF video-imaging of mTAL tubules to investigate functional localization and regulation of Na(+)-dependent HCO3- influx during NH4(+)-induced metabolic acidosis. Tubule acidification was induced by removing luminal Na+ (DeltapHi: 0.88 +/- 0.11 pH units, n = 10). Subsequently the basolateral perfusion solution was changed to CO2/HCO3- buffer with and without Na+. Basolateral Na(+)-H+ exchange function was inhibited with amiloride. Na(+)-dependent HCO3- influx was determined by calculating initial base flux of Na(+)-mediated re-alkalinization. In untreated animals base flux was 8.4 +/- 0.9 pmol min(-1) mm(-1). A 2.4-fold increase of base flux to 21.8 +/- 3.2 pmol min(-1) mm(-1) was measured in NH4(+)-treated animals (11 days, n = 11). Na(+)-dependent re-alkalinization was significantly larger when compared to control animals (0.38 +/- 0.03 versus 0.22 +/- 0.02 pH units, n = 10). In addition, Na(+)-dependent HCO3- influx was of similar magnitude in chloride-free medium and also up-regulated after NH4+ loading. Na(+)-dependent HCO3- influx was not inhibited by 400 microm DIDS. A strong up-regulation of NBCn1 staining was confirmed in immunolabelling experiments. RT-PCR analysis revealed no evidence for the Na(+)-dependent HCO3- transporter NBC4 or the two Na(+)-dependent CI-/HCO3- exchangers NCBE and NDCBE. These data strongly indicate that rat mTAL tubules functionally express basolateral DIDS-insensitive NBCn1. Function and protein are strongly up-regulated during NH4(+)-induced metabolic acidosis. We suggest that NBCn1-mediated basolateral HCO3- influx is important for basolateral NH3 exit and thus NH4+ excretion by means of setting pHi to a more alkaline value.
    [Abstract] [Full Text] [Related] [New Search]