These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Author: Vogna D, Marotta R, Napolitano A, Andreozzi R, d'Ischia M. Journal: Water Res; 2004 Jan; 38(2):414-22. PubMed ID: 14675653. Abstract: Diclofenac, a widely used anti-inflammatory drug, has been found in many Sewage Treatment Plant effluents, rivers and lake waters, and has been reported to exhibit adverse effects on fish. Advanced oxidation processes, ozonation and H2O2/UV were investigated for its degradation in water. The kinetic of the degradation reaction and the nature of the intermediate products were still poorly defined. Under the conditions adopted in the present study, both ozonation and H2O2/UV systems proved to be effective in inducing diclofenac degradation, ensuring a complete conversion of the chlorine into chloride ions and degrees of mineralization of 32% for ozonation and 39% for H2O2/UV after a 90 min treatment. The reactions were found to follow similar, but not identical, reaction pathways leading to hydroxylated intermediates (e.g. 2-[(2,6-dichlorophenyl)amino]-5-hydroxyphenylacetic acid) and C-N cleavage products (notably 2,5-dihydroxyphenylacetic acid) through competitive routes. Subsequent oxidative ring cleavage leads to carboxylic acid fragments via classic degradation pathways. In the pH range 5.0-6.0 kinetic constants (1.76 x 10(4)-1.84 x 10(4) M(-1) s(-1)) were estimated for diclofenac ozonation.[Abstract] [Full Text] [Related] [New Search]