These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of improved attenuated and nucleic acid vaccines for heartwater. Author: Collins NE, Pretorius A, van Kleef M, Brayton KA, Allsopp MT, Zweygarth E, Allsopp BA. Journal: Dev Biol (Basel); 2003; 114():121-36. PubMed ID: 14677683. Abstract: Heartwater, an economically important tickborne disease of wild and domestic ruminants, is caused by the intracellular rickettsia Ehrlichia (formerly Cowdria) ruminantium. The only commercially available immunization procedure is more than 50 years old and uses an infection and treatment regimen using a preparation of virulent organisms in cryopreserved sheep blood. Much research has been conducted into the development of attenuated, inactivated, and nucleic acid vaccines over the last half-century, with relatively little success until recently. We describe here the development of two new experimental vaccines, a live attenuated vaccine and a nucleic acid vaccine. The attenuation of virulent E. ruminantium was achieved by growing the organisms in a continuous canine macrophage-monocyte cell line. After more than 125 passages the cultures produced no disease when inoculated into mice or sheep, and the animals were completely protected against a subsequent lethal homologous needle challenge. The nucleic acid vaccine consists of a cocktail of four E. ruminantium genes, from a genetic locus involved in nutrient transport, cloned in a DNA vaccine vector. Sheep immunized with this cocktail were completely protected against a subsequent lethal needle challenge, either with the homologous isolate or with any one of five different virulent heterologous isolates. Protection against a field challenge in a heartwater endemic area, however, was relatively poor. Genetic characterization of the E. ruminantium genotypes in the challenge area did not identify any having major differences from those used in the heterologous needle challenge experiments, so lack of cross-immunity between the vaccine genotype and those in the field was unlikely to be the main reason for the lack of protection. We believe that a needle challenge is far less severe than a tick challenge, and that the immunity engendered by the DNA vaccine alone was not sufficient to protect against the natural route of infection. Boosting with live organisms after DNA vaccination results in much higher levels of protection against tick challenge than DNA vaccination alone, suggesting that improved methods of boosting could lead to more effective immunization.[Abstract] [Full Text] [Related] [New Search]