These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ryegrass-based diet and barley supplementation: partition of nitrogenous nutrients among splanchnic tissues and hind limb in finishing lambs.
    Author: Savary-Auzeloux I, Majdoub L, Le Floc'h N, Ortigues-Marty I.
    Journal: J Anim Sci; 2003 Dec; 81(12):3160-73. PubMed ID: 14677872.
    Abstract:
    Splanchnic metabolism of nitrogenous nutrients and their uptake by the hind limb were studied in finishing lambs receiving ryegrass harvested at grazing stage with or without barley supplementation. Six multicatheterized lambs (40.2 +/- 1.5 kg) were fed with frozen ryegrass (RG) at 690 kJ of ME intake (MEI) x d(-1) x BW(-0.75) and 20.8 g of N intake (NI)/d successively without and with barley supplementation (RG + B), according to a crossover design. Barley supplementation represented 21% of DM intake and increased the MEI and the NI by 32 and 24% respectively, (P < 0.01). In the ruminal fluid, barley increased acetate and butyrate concentrations by 21.2 and 49.6%, respectively (P < 0.04), without any effect on the ammonia concentration. Consequently, the net portal appearance (NPA) of ammonia was not modified, but the NPA of total amino acids (TAA; +38%) and nonessential amino acids (NEAA; +45%) was increased (P < 0.05) by barley supplementation. Taken individually, the NPA of the essential amino acids (EAA) was increased for isoleucine (+32%; P < 0.05), threonine (+151%; P < 0.03), and lysine (+26%; P < 0.06), with no effect for the other EAA. In contrast to what was observed at the PDV level, no significant alteration in the net hepatic amino acid flux was observed for TAA, EAA, NEAA, branched-chain amino acids (BCAA), urea, and ammonia after barley supplementation, showing a relatively minor role of the liver in the regulation of the supply of amino acids to the peripheral tissues. However, taken individually, the net hepatic uptake of some NEAA involved in gluconeogenesis and/or ureagenesis was altered with barley supplementation: the alanine uptake was increased by 44% (P < 0.05), aspartate + asparagine (asx) uptake was decreased by 18% (P < 0.01), and glutamate + glutamine (glx) release tended (P < 0.10) to be increased by 208%. With barley supplementation, NI increased by 5 g of N/d, and net splanchnic release increased by 4.63 g of N/d. Consequently, the additional dietary N supply (together with energy supply) was nearly exclusively available to peripheral tissues as AA-N (N as amino acids), but no strong effect of this additional supply of AA to the hind limb could be demonstrated in terms of net AA hind limb fluxes. Consequently, barley supplementation of a ryegrass-based diet increased the net AA release by the splanchnic tissues, with little effect on the AA net uptake by the peripheral tissues.
    [Abstract] [Full Text] [Related] [New Search]