These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. Author: Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MA, Hatanaka M, Fujiki T, Maeda H, Takahashi S, Takeshita A. Journal: J Clin Invest; 2003 Dec; 112(12):1871-9. PubMed ID: 14679182. Abstract: The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived H2O2 is an EDHF in mesenteric arteries of mice and humans and in porcine coronary microvessels. However, the mechanism for the endothelial production of H2O2 as an EDHF remains to be elucidated. In this study, we tested our hypothesis that Cu,Zn-superoxide dismutase (Cu,Zn-SOD) plays a pivotal role in endothelium-dependent hyperpolarization, using control and Cu,Zn-SOD-/- mice. In mesenteric arteries, EDHF-mediated relaxations and hyperpolarizations were significantly reduced in Cu,Zn-SOD-/- mice with no inhibitory effect of catalase, while endothelium-independent relaxations and hyperpolarizations were preserved. Endothelial H2O2 production also was significantly reduced in Cu,Zn-SOD-/- mice. In Langendorff isolated heart, bradykinin-induced increase in coronary flow was significantly reduced in Cu,Zn-SOD-/- mice, again with no inhibitory effect of catalase. The exogenous SOD mimetic tempol significantly improved EDHF-mediated relaxations and hyperpolarizations and coronary flow response in Cu,Zn-SOD-/- mice. These results prove the novel concept that endothelial Cu,Zn-SOD plays an important role as an "EDHF synthase" in mice, in addition to its classical role to scavenge superoxide anions.[Abstract] [Full Text] [Related] [New Search]