These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chromatin organization contributes to non-randomly distributed double-strand breaks after exposure to high-LET radiation. Author: Radulescu I, Elmroth K, Stenerlöw B. Journal: Radiat Res; 2004 Jan; 161(1):1-8. PubMed ID: 14680402. Abstract: The influence of higher-order chromatin structure on the non-random distribution of DNA double-strand breaks induced by high-LET radiation was investigated. Five different chromatin structures (intact cells, condensed and decondensed chromatin, nucleoids and naked genomic DNA) from GM5758 cells or K562 cells were irradiated with (137)Cs gamma-ray photons and 125 keV/microm nitrogen ions (16-25 MeV/nucleon). DNA was purified with a modified lysis procedure to avoid release of heat-labile sites, and fragment size distributions and double-strand break yields were analyzed by different pulsed-field gel electrophoresis protocols. Whereas double-strand breaks in photon-irradiated cells were randomly distributed, irradiation of intact K562 cells with high-LET nitrogen ions produced an excess of non-randomly distributed DNA fragments 10 kb-1 Mbp in size. Complete removal of proteins eliminated this non-random component. There was a gradual increase in the yield of double-strand breaks for each chromatin decondensation step, and compared to intact cells, the yields for naked DNA (in buffer without scavengers) increased 83 and 25 times after photon and nitrogen-ion irradiation, respectively. The corresponding relative biological effectiveness decreased from 1.6-1.8 for intact cells to 0.49 for the naked DNA. We conclude that the organization of DNA into chromatin fiber and higher-order structures is responsible for the majority of non-randomly distributed double-strand breaks induced by high-LET radiation. However, our data suggest a complex interaction between track structure and chromatin organization over several levels.[Abstract] [Full Text] [Related] [New Search]