These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Participation of PI3K and ERK1/2 pathways are required for human brain vascular smooth muscle cell migration. Author: Yang GY, Yao JS, Huey M, Hashimoto T, Young WL. Journal: Neurochem Int; 2004 May; 44(6):441-6. PubMed ID: 14687609. Abstract: Human brain vascular smooth muscle cell (HBVSMC) migration contributes to angiogenesis and several pathological processes in the brain. However, the molecular mechanism of angiogenesis, in which smooth muscle cell contributes, remains unclear. Our study investigates the role of vascular endothelial growth factor (VEGF) in the HBVSMC migration and elucidates the chemotactic signaling pathway mediating this action. We used the in vitro 'scratch' wound method to detect the HBVSMC migration. VEGF(165) (1-40ng/ml) induced the HBVSMC migration in a dose-dependent manner (P<0.05). VEGF(165) does not induce HBVSMC proliferation. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly inhibited serine/threonine kinase Akt/protein kinase B (PKB) phosphorylation and reduced HBVSMC migration into the wound edge following VEGF(165) stimulation (P<0.05). PD98059, an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, also significantly inhibited ERK1/2 phosphorylation and reduced the numbers of SMC migration. Parallel distance measurement showed that VEGF(165) induced HBVSMC migration significantly reduced due to inhibition of PI3K or ERK1/2 phosphorylation (P<0.05). Our results demonstrate that VEGF(165) could induce HBVSMC migration but not proliferation in vitro. Inhibiting Akt/PKB or ERK1/2 phosphorylation could reduce VEGF(165) induced HBVSMC migration. We provide the first evidence that activation of PI3K or ERK1/2 pathways are a crucial event in VEGF(165) mediated signal transduction leading to HBVSMC migration.[Abstract] [Full Text] [Related] [New Search]