These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An immunohistochemical method that distinguishes free from complexed SNAP-25.
    Author: Xiao J, Xia Z, Pradhan A, Zhou Q, Liu Y.
    Journal: J Neurosci Res; 2004 Jan 01; 75(1):143-51. PubMed ID: 14689457.
    Abstract:
    Soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) complexes composed of target (t-) SNAREs syntaxin and SNAP-25 and vesicle SNARE synaptobrevin play an essential role in neurosecretion. It is hypothesized that a transient intermediate complex between the t-SNAREs is formed during the assembly of the ternary complex. The existence of the t-SNARE binary complexes in vivo, however, has not been demonstrated. By using an affinity absorption scheme with preformed syntaxin-SNAP-25 complexes, we isolated antibodies capable of distinguishing free SNAP-25 from those associated with syntaxin. By semiquantitative immunohistochemistry, we estimated that, in cultured cerebellar neurons, the majority of SNAP-25 existed as complexes. Compared with the cultured neurons, PC12 cells expressed significantly less syntaxin, and we found that SNAP-25 was primarily in free forms. In contrast, a PC12 line that stably expressed a recombinant syntaxin showed a marked increase in SNAP-25 complexes. By using fluorescence resonance energy transfer (FRET) techniques, we observed FRET between cyan fluorescence protein-syntaxin and yellow fluorescence protein-SNAP-25 fusion proteins expressed in COS-7 and PC12 cells, suggesting a physiological interaction between syntaxin and SNAP-25. Our results demonstrate that, unlike what was previously hypothesized, syntaxin and SNAP-25 exist preferably as stable binary complexes in neurons. These findings offer novel insight into the mechanisms underlying the initiation and regulation of SNARE complex assembly.
    [Abstract] [Full Text] [Related] [New Search]