These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis.
    Author: Willey JS, Biknevicius AR, Reilly SM, Earls KD.
    Journal: J Exp Biol; 2004 Jan; 207(Pt 3):553-63. PubMed ID: 14691103.
    Abstract:
    Crocodilians tow their large muscular tail behind them during terrestrial bouts when they high walk (a walking trot). Analysis of ground reaction forces in the American alligator (Alligator mississippiensis) revealed the consequences of tail-dragging. Individual limb and tail ground reaction force records show that the hindlimbs of Alligator take on a substantial role in body mass support consistent with the more caudal location of its center of mass due to the presence of a particularly heavy tail (representing nearly 28% of total body mass). Furthermore, because the constant drag imposed by the tail is substantial, both fore- and hindlimbs in Alligator have a heightened propulsive role as a means of countering the net braking effect of the tail. Ground reaction forces of the whole body were used to assess how well Alligator was able to utilize mechanical energy-saving mechanisms (inverse pendulum or mass-spring). A high-walking Alligator recovers, on average, about 20% of its mechanical energy by inverse pendulum mechanics. These modest energy recovery levels are likely to be due to a combination of factors that may include low locomotor speed, imprecise coordination of contralateral limbs in the trot, frequent dragging of feet of protracting limbs during swing phase and, possibly, tail dragging.
    [Abstract] [Full Text] [Related] [New Search]