These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nerve growth factor-induced sprouting of mature, uninjured sympathetic axons. Author: Isaacson LG, Saffran BN, Crutcher KA. Journal: J Comp Neurol; 1992 Dec 15; 326(3):327-36. PubMed ID: 1469116. Abstract: The infusion of nerve growth factor (NGF) into the lateral ventricle of the mature rat brain elicits a sprouting response from axons associated with the intradural segment of the internal carotid artery. Using electron microscopic techniques, we observed a three-fold increase in the total number of perivascular axons. This NGF-elicited response is characterized by a dramatic reduction in glial cell ensheathment similar to that observed during development and by the presence of profiles devoid of organelles that may represent newly formed sprouts. In spite of the increase in axon number, no significant changes in the percentage of small, medium, or large axons were observed. The three-fold increase in the total number of axons was accompanied by an increase in the number of axons/fascicle but no change in the number of fascicles. This, along with the observation that a majority of sprouted axons were associated with other axons, supports the idea that the sprouted axons tend to associate preferentially with other axons. Bilateral superior cervical ganglionectomies following cytochrome C infusion indicate that approximately 60% of the axons associated with the internal carotid artery arise from the superior cervical ganglion and that the majority of axons contacting the smooth muscle layer arise from this ganglion. Sympathectomy following NGF infusion resulted in a 79% reduction in the total number of perivascular axons, demonstrating overwhelmingly that the majority of sprouted axons are sympathetic fibers. These results demonstrate that infusion of NGF into the mature rat brain results in the preferential sprouting of sympathetic axons associated with the internal carotid artery. These findings are consistent with the hypothesis that NGF normally plays a role in the regulation of autonomic cerebrovascular innervation in the adult animal and that mature, uninjured sympathetic neurons remain responsive to NGF.[Abstract] [Full Text] [Related] [New Search]