These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell.
    Author: Holz GG.
    Journal: Diabetes; 2004 Jan; 53(1):5-13. PubMed ID: 14693691.
    Abstract:
    Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor-mediated signal transduction in the pancreatic beta-cell. Although GLP-1 is established to be a cAMP-elevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism has been described, one in which GLP-1 activates cAMP-binding proteins designated as cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac). Two variants of Epac (Epac1 and Epac2) are expressed in beta-cells, and downregulation of Epac function diminishes stimulatory effects of GLP-1 on beta-cell Ca(2+) signaling and insulin secretion. Of particular note are new reports demonstrating that Epac couples beta-cell cAMP production to the stimulation of fast Ca(2+)-dependent exocytosis. It is also reported that Epac mediates the cAMP-dependent mobilization of Ca(2+) from intracellular Ca(2+) stores. This is a process of Ca(2+)-induced Ca(2+) release (CICR), and it generates an increase of [Ca(2+)](i) that may serve as a direct stimulus for mitochondrial ATP production and secretory granule exocytosis. This article summarizes new findings concerning GLP-1 receptor-mediated signal transduction and seeks to define the relative importance of Epac and PKA to beta-cell stimulus-secretion coupling.
    [Abstract] [Full Text] [Related] [New Search]