These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The molecular mechanism of sensitization to Fas-mediated apoptosis by 2-methoxyestradiol in PC3 prostate cancer cells.
    Author: Shimada K, Nakamura M, Ishida E, Kishi M, Matsuyoshi S, Konishi N.
    Journal: Mol Carcinog; 2004 Jan; 39(1):1-9. PubMed ID: 14694442.
    Abstract:
    It is widely known that death receptor Fas-dependent apoptotic signals are associated with development of prostate cancer, but the key pathways involved in sensitivity to the apoptosis remain unclear. Here we investigated the molecular mechanism by which 2-methoxyestradiol (2-ME) effectively sensitizes a human prostate cancer cell line, PC3, to Fas-mediated apoptosis. 2-ME significantly inhibited nuclear factor-kappaB (NF-kappaB) activation and downregulated Fas-associated death domain (FADD) protein interluekin-1beta-converting enzyme inhibitory protein (FLIP). Overexpression of the dominant negative mutant form of IkappaBalpha (d/n IkappaBalpha) or treatment with Ikappa kinase-specific inhibitor Bay117082 gave the same results, although the sensitizing effect was not as pronounced. A selective inhibitor of Akt phosphorylation, LY294002, accelerated formation of the death-inducing signaling complex (DISC) not only by FLIP reduction but also by enhancement of recruitment of the FADD to Fas, thereby sensitizing PC3 cells to apoptosis similar to the case with 2-ME stimulation. Moreover, we found that inhibition of 2-ME-induced extracellular signal-regulated kinase (ERK) activation by the upstream kinase inhibitor PD98059 significantly enhanced 2-ME-mediated suppression of Akt activation, resulting in much greater sensitization to apoptosis. Taken together, the present findings indicate that 2-ME suppresses NF-kappaB/FLIP signaling and enhances DISC formation through inhibition of Akt, and that PC3 cells thereby are being sensitized to Fas-mediated apoptosis and by a process closely associated with ERK.
    [Abstract] [Full Text] [Related] [New Search]