These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased prooxidant production and enhanced susceptibility to glutathione depletion in HepG2 cells co-expressing HCV core protein and CYP2E1.
    Author: Wen F, Abdalla MY, Aloman C, Xiang J, Ahmad IM, Walewski J, McCormick ML, Brown KE, Branch AD, Spitz DR, Britigan BE, Schmidt WN.
    Journal: J Med Virol; 2004 Feb; 72(2):230-40. PubMed ID: 14695664.
    Abstract:
    Hepatitis C virus (HCV) and HCV core protein are hypothesized to induce hepatic oxidative stress and exacerbate injury caused by other toxins such as ethanol that induce the cytochrome P450 enzyme, CYP2E1. In the current study, the effects of HCV core protein [sequence genotype 1b, (nt 342-915)] on parameters indicative of oxidative stress were evaluated in HepG2 cells stably over expressing CYP2E1 (E47), or vector controls (C34). Stable (>10 passages) expression of HCV core protein and CYP2E1 was confirmed in clonal cell lines at the level of mRNA and immunoreactive protein. Prooxidant production, as determined by cellular oxidation of dichlorodihydrofluorescin and dihydroethidium (HE), was increased by expression of HCV core protein in the presence or absence of CYP2E1. Depletion of glutathione (GSH) with buthionine sulfoximine (BSO) enhanced prooxidant production in both C34 and E47 cells. In addition, prooxidant production was greater in BSO-treated cells expressing HCV core protein, and this effect was further enhanced in cells expressing both HCV core and CYP2E1. The CYP2E1 inhibitor, 4-methylpyrazole, could suppress increased prooxidant production in E47 cells. Finally, cells co-expressing both CYP2E1 and HCV core protein showed significantly decreased viability following GSH depletion. These studies show simultaneous expression of HCV core protein and CYP2E1 increases parameters indicative of oxidative stress as well as sensitization to cell injury induced by GSH depletion. These results support the hypothesis that enhanced injury in hepatocytes over expressing both HCV core protein and CYP2E1 is mediated by increases in oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]